
KZH-Fold: Sublinear accumulation

George Kadianakis - Aranxta Zapico - Hossein Hafezi - Benedikt Bünz

KZH-Fold: Sublinear accumulation 1 / 54

Table of Contents

1 Background

2 Motivation

3 KZH and Its Accumulation Scheme: KZH-Fold

4 IVC for R1CS from PCS accumulation

5 Non-Uniform PCD for R1CS from PCS Accumulation

KZH-Fold: Sublinear accumulation 2 / 54

Background

KZH-Fold: Sublinear accumulation 3 / 54

What is Incremental Verifiable Computation (IVC)? [Val08]

IVC:

F F F

PCD: Generalizes IVC to DAGs

KZH-Fold: Sublinear accumulation 4 / 54

Non-Uniform IVC/PCD?

Step function F can be one of multiple predefined instructions F1, ..., Fk

Motivation: Verifiable CPU

KZH-Fold: Sublinear accumulation 5 / 54

Traditional IVC construction? [BCC+13]

IVC =⇒ Augmented circuit:

1 Subcircuit F

2 SNARK verifier subcircuit (recursive overhead)

F

SNARK Verifier

F

SNARK Verifier

F

SNARK Verifier

KZH-Fold: Sublinear accumulation 6 / 54

IVC Construction from Accumulation Schemes [Halo]

X SNARK verifier in circuit is expensive!

Observation. Defer checking all proof =⇒ accumulation schemes

KZH-Fold: Sublinear accumulation 7 / 54

Accumulation Scheme

KZH-Fold: Sublinear accumulation 8 / 54

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

Let Lπ and Lacc be two NP languages.

An accumulation:

acc ∈ Lacc , π ∈ Lπ
accumulate

=⇒ acc ′ ∈ Lacc

satisfies completeness and knowledge soundness.

KZH-Fold: Sublinear accumulation 9 / 54

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

Let Lπ and Lacc be two NP languages.

An accumulation:

acc ∈ Lacc , π ∈ Lπ
accumulate

=⇒ acc ′ ∈ Lacc

Completeness: acc and π are satisfied ⇐⇒ acc ′ is satisfied.

Decider = Satisfiability function of Lacc

KZH-Fold: Sublinear accumulation 10 / 54

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

Let Lπ and Lacc be two NP languages.

An accumulation:

acc ∈ Lacc , π ∈ Lπ
accumulate

=⇒ acc ′ ∈ Lacc

Knowledge soundness: witness for acc ′ =⇒ witness for acc and π.

KZH-Fold: Sublinear accumulation 11 / 54

Sublinear Accumulation

Sublinearity:

acc ∈ Lacc , π ∈ Lπ =⇒ |acc | ∈ o(|π|)
Decider time < Verification of π

Acc
Accumulate

Acc'

Accumulate
Acc Acc'

Figure: Sublinear vs Linear-Sized Accumulation Scheme

KZH-Fold: Sublinear accumulation 12 / 54

Build IVC from Accumulation
Scheme

KZH-Fold: Sublinear accumulation 13 / 54

How to Use Accumulation to Build IVC?

F

Acc Verifier

F

Acc Verifier

F

Acc Verifier

π1, π2, . . . , πn =⇒ Accumulate them into accn and check accn.

KZH-Fold: Sublinear accumulation 14 / 54

BCLMS Compiler: Accumulation for NARK =⇒ IVC

BCLMS Compiler: NARK + NARK Verifier Accumulation =⇒ IVC

IVC proof = |acc|
IVC verifier = Decideracc

IVC prover = ProverNARK (for augmented circuit) + Proveracc

Sublinear accumulator =⇒ IVC/PCD with sublinear proofs/decider

KZH-Fold: Sublinear accumulation 15 / 54

Example of Nova

KZH-Fold: Sublinear accumulation 16 / 54

Trivial Nark

Prover(x, w) Verifier(x)

w

I can check pair
(x, w) myself

KZH-Fold: Sublinear accumulation 17 / 54

Nova (Accumulation for Trivial R1CS NARK)

Nova accumulator for (relaxed) R1CS: (n =instance+witness size of R1CS)

Accumulator size: O(n)

Accumulator prover time: O(n)

Accumulator decider time: O(n)

Verifier circuit: O(1), 2 or 3 scalar multiplications

KZH-Fold: Sublinear accumulation 18 / 54

Nova (Accumulation for Trivial R1CS NARK)

Nova accumulator for (relaxed) R1CS: (n =instance+witness size of R1CS)

Accumulator size: O(n)

Accumulator prover time: O(n)

Accumulator decider time: O(n)

Verifier circuit: O(1), 2 or 3 scalar multiplications

Nova IVC via BCLMS compiler:

IVC proof size: O(n)

IVC prover time: O(n)

IVC decider time: O(n)

KZH-Fold: Sublinear accumulation 19 / 54

Nova Compression Phase

Consider a function (circuit) F to be 1M constraints =⇒
accumulator size: 80MB

decider time: 4s

=⇒ Impractical distributed proving.

KZH-Fold: Sublinear accumulation 20 / 54

Nova Compression Phase

Consider a function (circuit) F to be 1M constraints =⇒
accumulator size: 80MB

decider time: 4s

=⇒ Impractical distributed proving.

MicroNova/Nova solution: Run a zkSNARK at the last step of IVC =⇒
reduces proof size (≈ 1KB)

X 24x prover overhead

X No longer incremental.

KZH-Fold: Sublinear accumulation 21 / 54

Motivations of Paper

KZH-Fold: Sublinear accumulation 22 / 54

Motivation: Distributed Proving

First Prover

acc

Second prover

Run decider on
acc, the other guy
might be cheating!

KZH-Fold: Sublinear accumulation 23 / 54

Motivation: Distributed Proving of zkVM with SuperNova

First Prover Second prover

Holy moly!

N-IVC/N-PCD with SuperNova =⇒ One accumulator per instruction

KZH-Fold: Sublinear accumulation 24 / 54

Motivation For Sublinear Decider

F F

Step 1 Step 2

F

Step n

Run decider

Figure: IVC when proof of the last step is needed.

KZH-Fold: Sublinear accumulation 25 / 54

Motivation: IVC When All Steps Matter!

F F

Step 1 Step 2

F

Step n

Run decider Run decider Run decider

Figure: IVC when proof of all steps are needed.

Applications:

Light clients

Verifiable key directory

Succinct blockchain

KZH-Fold: Sublinear accumulation 26 / 54

Motivation: Distributed signature aggregation (1)

Ethereum finality time: 15min =⇒ dominated by signature
aggregation computation

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

Recusive
Aggregator

Block Proposer

KZH-Fold: Sublinear accumulation 27 / 54

Motivation: Distributed signature aggregation (2)

Observations:

Computation of aggregators:

BLS aggregation
Union of bit vectors(mini PIOP)
Recomputing aggregate public key

Signature aggregation is a layered tree =⇒ model as PCD

Communication is P2P =⇒ we require low communication

KZH-Fold: Sublinear accumulation 28 / 54

Motivation: Distributed signature aggregation (3)

Signature Aggregation Based on PCD with sublinear:

Improve verifier time and communication by 5x

5x improvement in finality time

KZH-Fold: Sublinear accumulation 29 / 54

Contribution

KZH-Fold: Sublinear accumulation 30 / 54

Contributions

KZH, PCS with Sublinear Opening

Sublinear Accumulator Based on KZH
IVC/PCD with sublinear proof and verifier.
Signature aggregation for Ethereum via PCD.

New Approach to N-IVC / N-PCD, First efficient N-PCD
scheme based on any polynomial accumulation

KZH-Fold: Sublinear accumulation 31 / 54

See numbers for KZH-fold

Scheme Prover Verifier |Acc| # Constraints
Spartan+KZH-fold 16.5 s 135 ms 37 KB 221 ≈ 2097k

Nova 4.8 s 5.6 s 80.8 MB 1185k

Table: Spartan+KZH-Fold vs Nova for Circuit With 2000 Poseidon Hashes

KZH-Fold: Sublinear accumulation 32 / 54

Starting Point

KZH-Fold: Sublinear accumulation 33 / 54

Goal

IVC with sublinear proof/decider ⇐⇒ Sublinear accumulation.

PCS with sublinear predicate =⇒ Sublinear accumulation.

Goal: PCS with following properties:

Homomorphic

Constant size commitment

Sublinear opening size

Algebraic and low degree verifier checks

No degree 2 pairing∑
i

e(Pi , gi) =
∑
j

e(P ′
i , g

′
i) =⇒ gi , g

′
i are fixed.

KZH-Fold: Sublinear accumulation 34 / 54

KZH and Its Accumulation
Scheme: KZH-Fold

KZH-Fold: Sublinear accumulation 35 / 54

Starting point: Hyrax

Hyrax:

+ PCS with square root opening size =⇒ square root accumulator size

X Commitment = O(
√
n) group elements =⇒ High recursive overhead

KZH-Fold: Sublinear accumulation 36 / 54

Starting point: Hyrax

Given a Pedersen setup (g1, g2, . . . , gm), commit to rows of the coefficient
matrix:

t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
. . .

...
tk1 tk2 · · · tkm

=⇒ c1
=⇒ c2

...
=⇒ ck

Commitment size is k = O(
√
n) ⇒ homomorphism/acc verifier is O(

√
n)

KZH-Fold: Sublinear accumulation 37 / 54

KZH: Commitment Phase

To commit to the matrix of evaluation points via KZH:

1 C : commit to the whole matrix in 1G element, using a universal-SRS.

2 {Di}: Commit to each row using g1, . . . , gm.
t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
. . .

...
tk1 tk2 · · · tkm

︸ ︷︷ ︸

C

=⇒ D1

=⇒ D2
...

=⇒ Dk

Prove via pairing that C and {Di} correspond to the same matrix. Uses
SRS.

KZH-Fold: Sublinear accumulation 38 / 54

KZH: Opening and Verification

To open, send {Di} + Hyrax opening

To verify an opening with respect to C and the opening:
1 Prove that C and {Di} correspond to the same set of evaluation points.
2 Run hyrax verification.

KZH-Fold: Sublinear accumulation 39 / 54

KZH properties

For a multilinear polynomial f (X⃗) with on boolean hypercube of size ℓ:

commitment time = O(ℓ) group operations.

Proof size =
√
ℓ G1 +

√
ℓ F

Opening time = ℓ F 1

Verifier time =
√
ℓ pairing + MSM(2

√
ℓ) +

√
ℓ F.

1Dominated by polynomial evaluation.
KZH-Fold: Sublinear accumulation 40 / 54

KZH-k

We extend KZH matrix construction to tensors of higher degree =⇒
Lower verifier cost at the cost of higher opening.

Commitment cost: O(n)

Opening cost: O(n1/2) via pre-processing

Verifier cost: O(k · n1/k)

KZH-Fold: Sublinear accumulation 41 / 54

KZH-fold

The verifier function for KZH= degree 2 scalar multiplications + degree 1

pairing check
Protostar compiler

=⇒
Accumulator size. O(ℓ

1
2)

Decider complexity. O(ℓ
1
2)

Prover complexity. O(ℓ)

Verifier complexity. 3− 4 G1 scalar multiplications + O(1) F

KZH-k fold:

O(k · n1/k) decider and accumulator size

k + 1 scalar multiplication in recursive circuit.

KZH-Fold: Sublinear accumulation 42 / 54

Compariosn of kzh-fold and other schemes

Scheme Recursive Overhead Decider —acc—
Nova 2 group ops MSM(n) O(n)

KZH2-fold 3 group ops n
1
2 P O(n

1
2)

KZH-k fold k + 1 group ops k · n
1
k P O(k · n

1
k)

Halo O(log n) group ops MSM(n) O(log n)

KZH-Fold: Sublinear accumulation 43 / 54

IVC/PCD for R1CS From
PCS Accumulation

KZH-Fold: Sublinear accumulation 44 / 54

Accumulation for NP from PCS Accumulation

NP
PIOP
=⇒ Polynomial checks

PCS Acc
=⇒ Accumulate polynomial checks

R1CS
Spartan
=⇒ Polynomial checks

PCS Acc
=⇒ Accumulate polynomial checks

KZH-Fold: Sublinear accumulation 45 / 54

Accumulation for R1CS from PCS Accumulation

R1CS
Spartan
=⇒ witness polynomial w(·) + matrices A,B,C evaluations

w(·) =⇒ interpolate w(·) through a PCS and accumulate.

Matrices A,B,C can be evaluated as KZH, i.e. KZH works for sparse
matrices too.

Better way =⇒ accumulate following relation directly:

RÃ = {(rx ∈ Fµn , ry ∈ Fµm , z ∈ F) : Ã(rx , ry) = z}

KZH-Fold: Sublinear accumulation 46 / 54

Accumulate A, B , C matrix evaluations

Prover cost: log n evaluation of Ã (out of circuit)

Verifier cost (circuit size): O(log n)F
Proof size: O(log n)F

KZH-Fold: Sublinear accumulation 47 / 54

Accumulation for R1CS

R1CS
Spartan
=⇒ witness polynomial w(·) + matrices A,B,C evaluations

w(·) =⇒ interpolate w(·) as PCS (KZH) and accumulate with PCS
accumulator (KZH-fold).

Accumulate matrix evaluation of A, B, C directly.

KZH-Fold: Sublinear accumulation 48 / 54

IVC from PCS accumulation

Figure: Augmented circuit initiated with KZH-fold

KZH-Fold: Sublinear accumulation 49 / 54

Non-Uniform PCD from PCS
Accumulation

KZH-Fold: Sublinear accumulation 50 / 54

Comparison of Approaches to N-PCD

Scheme Prover Time Verifier Time Witness Size
SuperNova O(

∑
|Fi |)G O(

∑
|Fi |)G O(

∑
i |Fi |)

Protostar O(
∑

|Fi |)G O(
∑

|Fi |)G O(
∑

i |Fi |)
KiloNova O(

∑
|Fi |)G O(

∑
|Fi |)G O(

∑
i |Fi |)

Spartan+PA Pacc(maxi |Fi |) +
∑

i log |Fi | Dacc(maxi |Fi |) + O(
∑

i |Fi |)F O(|acc |+
∑

logi |Fi |)

PA=KZH-Fold:

Prover time: O(maxi |Fi |) +
∑

i log |Fi |
Verifier time: O(

√
maxi |Fi |) + O(

∑
i |Fi |)F

Witness size:
√
maxi |Fi |+

∑
logi |Fi |

KZH-Fold: Sublinear accumulation 51 / 54

Non-Uniform PCD from PCS Accumulation

High-level idea:

PCS accumulation =⇒ more flexible than circuit accumulation

Polynomials of different degrees can be accumulated.

Comparison to Supernova:

directly accumulates circuit =⇒ one running accumulator for each
instruction.

KZH-Fold: Sublinear accumulation 52 / 54

Non-Uniform IVC from PCS Accumulation (1)

Fi
Spartan
=⇒ ωi (·) and matrix evaluation of Ai , Bi and Ci .

ωi (·) =⇒
1 Consider a running polynomial of degree deg(ωi) < D.
2 Accumulate ωi (·) with this running PCS accumulator.

matrix evaluations of Ai , Bi and Ci

Similar strategy to SuperNova

Key to efficiency: Matrix evaluations scale logarithmically with the size of
the original circuit.

KZH-Fold: Sublinear accumulation 53 / 54

THNAKS!

KZH-Fold: Sublinear accumulation 54 / 54

	Background
	Motivation
	KZH and Its Accumulation Scheme: KZH-Fold
	IVC for R1CS from PCS accumulation
	Non-Uniform PCD for R1CS from PCS Accumulation

