#### KZH-Fold: Sublinear accumulation

George Kadianakis - Aranxta Zapico - Hossein Hafezi - Benedikt Bünz





#### Background

- 2 Motivation
- 3 KZH and Its Accumulation Scheme: KZH-Fold
- IVC for R1CS from PCS accumulation
- 5 Non-Uniform PCD for R1CS from PCS Accumulation

# Background

æ

イロト 不得下 イヨト イヨト

### What is Incremental Verifiable Computation (IVC)? [Val08]

#### • IVC:



• PCD: Generalizes IVC to DAGs

Step function F can be one of multiple predefined instructions  $F_1$ , ...,  $F_k$ 

Motivation: Verifiable CPU



### Traditional IVC construction? [BCC+13]

- IVC  $\implies$  Augmented circuit:
  - Subcircuit F
  - SNARK verifier subcircuit (recursive overhead)



#### X SNARK verifier in circuit is expensive!

**Observation.** Defer checking all proof  $\implies$  accumulation schemes

## **Accumulation Scheme**

∃ ► < ∃ ►

- Let  $\mathcal{L}_{\pi}$  and  $\mathcal{L}_{acc}$  be two NP languages.
- An accumulation:

$$\mathit{acc} \in \mathcal{L}_{\mathit{acc}}, \, \pi \in \mathcal{L}_{\pi} \overset{\mathsf{accumulate}}{\Longrightarrow} \mathit{acc}' \in \mathcal{L}_{\mathit{acc}}$$

satisfies completeness and knowledge soundness.

- Let  $\mathcal{L}_{\pi}$  and  $\mathcal{L}_{acc}$  be two NP languages.
- An accumulation:

$$acc \in \mathcal{L}_{acc}, \pi \in \mathcal{L}_{\pi} \stackrel{\text{accumulate}}{\Longrightarrow} acc' \in \mathcal{L}_{acc}$$

**Completeness:** *acc* and  $\pi$  are satisfied  $\iff$  *acc'* is satisfied.

• Decider = Satisfiability function of  $\mathcal{L}_{acc}$ 

- Let  $\mathcal{L}_{\pi}$  and  $\mathcal{L}_{acc}$  be two NP languages.
- An accumulation:

$$acc \in \mathcal{L}_{acc}, \ \pi \in \mathcal{L}_{\pi} \overset{\mathsf{accumulate}}{\Longrightarrow} acc' \in \mathcal{L}_{acc}$$

**Knowledge soundness:** witness for  $acc' \implies$  witness for acc and  $\pi$ .

### Sublinear Accumulation

Sublinearity:

- acc  $\in \mathcal{L}_{acc}$ ,  $\pi \in \mathcal{L}_{\pi} \implies |acc| \in o(|\pi|)$
- Decider time  $\,<\,$  Verification of  $\pi$



Figure: Sublinear vs Linear-Sized Accumulation Scheme

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

# Build IVC from Accumulation Scheme

#### How to Use Accumulation to Build IVC?



 $\pi_1, \pi_2, \ldots, \pi_n \implies$  Accumulate them into  $acc_n$  and check  $acc_n$ .

э

BCLMS Compiler: NARK + NARK Verifier Accumulation  $\implies$  IVC

- IVC proof = |acc|
- IVC verifier = Decider<sub>acc</sub>
- IVC prover =  $Prover_{NARK}$  (for augmented circuit) +  $Prover_{acc}$

Sublinear accumulator  $\implies$  IVC/PCD with sublinear proofs/decider

## **Example of Nova**



3

イロト イヨト イヨト イヨト

Nova accumulator for (relaxed) R1CS: (n = instance + witness size of R1CS)

- Accumulator size: O(n)
- Accumulator prover time: O(n)
- Accumulator decider time: O(n)
- Verifier circuit: O(1), 2 or 3 scalar multiplications

Nova accumulator for (relaxed) R1CS: (n = instance + witness size of R1CS)

- Accumulator size: O(n)
- Accumulator prover time: O(n)
- Accumulator decider time: O(n)
- Verifier circuit: O(1), 2 or 3 scalar multiplications

#### Nova IVC via BCLMS compiler:

- IVC proof size: O(n)
- IVC prover time: O(n)
- IVC decider time: O(n)

#### Consider a function (circuit) F to be 1M constraints $\implies$

- accumulator size: 80MB
- decider time: 4s
- $\implies$  Impractical distributed proving.

Consider a function (circuit) F to be 1M constraints  $\implies$ 

- accumulator size: 80*MB*
- decider time: 4s
- $\implies$  Impractical distributed proving.

**MicroNova/Nova solution**: Run a zkSNARK at the last step of IVC  $\implies$  reduces proof size ( $\approx 1KB$ )

- X 24x prover overhead
- $\boldsymbol{X}$  No longer incremental.

## **Motivations of Paper**

3 1 4 3 1

#### Motivation: Distributed Proving



문 🛌 🖻

### Motivation: Distributed Proving of zkVM with SuperNova



• N-IVC/N-PCD with SuperNova  $\implies$  One accumulator per instruction

#### Motivation For Sublinear Decider



Figure: IVC when proof of the last step is needed.

글▶ 글

### Motivation: IVC When All Steps Matter!



Figure: IVC when proof of all steps are needed.

Applications:

- Light clients
- Verifiable key directory
- Succinct blockchain

#### Motivation: Distributed signature aggregation (1)

• Ethereum finality time: 15min  $\implies$  dominated by signature aggregation computation



Observations:

- Computation of aggregators:
  - BLS aggregation
  - Union of bit vectors(mini PIOP)
  - Recomputing aggregate public key
- ullet Signature aggregation is a layered tree  $\implies$  model as PCD
- Communication is P2P  $\implies$  we require low communication

Signature Aggregation Based on PCD with sublinear:

- Improve verifier time and communication by 5x
- 5x improvement in finality time

## Contribution

æ

イロト 不得下 イヨト イヨト

- KZH, PCS with Sublinear Opening
- Sublinear Accumulator Based on KZH
  - IVC/PCD with sublinear proof and verifier.
  - Signature aggregation for Ethereum via PCD.
- New Approach to N-IVC / N-PCD, First efficient N-PCD scheme based on any polynomial accumulation

| Scheme           | Prover | Verifier | Acc     | # Constraints           |
|------------------|--------|----------|---------|-------------------------|
| Spartan+KZH-fold | 16.5 s | 135 ms   | 37 KB   | $2^{21} \approx 2097 k$ |
| Nova             | 4.8 s  | 5.6 s    | 80.8 MB | 1185k                   |

Table: Spartan+KZH-Fold vs Nova for Circuit With 2000 Poseidon Hashes

# **Starting Point**

æ

イロト 不得下 イヨト イヨト

- IVC with sublinear proof/decider \iff Sublinear accumulation.
- PCS with sublinear predicate  $\implies$  Sublinear accumulation.

#### Goal: PCS with following properties:

- Homomorphic
- Constant size commitment
- Sublinear opening size
- Algebraic and low degree verifier checks
- No degree 2 pairing

$$\sum_{i} e(P_i, g_i) = \sum_{j} e(P'_i, g'_i) \implies g_i, g'_i \text{ are fixed.}$$

# KZH and Its Accumulation Scheme: KZH-Fold

KZH-Fold: Sublinear accumulation

Hyrax:

- + PCS with square root opening size  $\implies$  square root accumulator size
- X Commitment =  $O(\sqrt{n})$  group elements  $\implies$  High recursive overhead

Given a Pedersen setup  $(g_1, g_2, \ldots, g_m)$ , commit to rows of the coefficient matrix:

$$\begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1m} \\ t_{21} & t_{22} & \cdots & t_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k1} & t_{k2} & \cdots & t_{km} \end{bmatrix} \xrightarrow{\Longrightarrow} c_k$$

Commitment size is  $k = O(\sqrt{n}) \Rightarrow$  homomorphism/acc verifier is  $O(\sqrt{n})$ 

イロト イポト イヨト イヨト 二日

To commit to the matrix of evaluation points via KZH:

- **(**) *C*: commit to the whole matrix in  $1\mathbb{G}$  element, using a universal-SRS.
- **2**  $\{D_i\}$ : Commit to each row using  $g_1, \ldots, g_m$ .

$$\underbrace{\begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1m} \\ t_{21} & t_{22} & \cdots & t_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ t_{k1} & t_{k2} & \cdots & t_{km} \end{bmatrix}}_{C} \stackrel{\Longrightarrow}{\Longrightarrow} D_{1}$$

Prove via pairing that C and  $\{D_i\}$  correspond to the same matrix. Uses SRS.

- To open, send  $\{D_i\}$  + Hyrax opening
- To verify an opening with respect to C and the opening:
  - **(**) Prove that *C* and  $\{D_i\}$  correspond to the same set of evaluation points.
  - 2 Run hyrax verification.

For a multilinear polynomial  $f(\vec{X})$  with on boolean hypercube of size  $\ell$ :

• commitment time =  $O(\ell)$  group operations.

• Proof size 
$$= \sqrt{\ell} \mathbb{G}_1 + \sqrt{\ell} \mathbb{F}$$

- $\bullet$  Opening time =  $\ell$   $\mathbb F$   $^1$
- Verifier time =  $\sqrt{\ell}$  pairing + MSM( $2\sqrt{\ell}$ ) +  $\sqrt{\ell}$  F.

<sup>&</sup>lt;sup>1</sup>Dominated by polynomial evaluation.

We extend KZH matrix construction to tensors of higher degree  $\implies$  Lower verifier cost at the cost of higher opening.

- Commitment cost: O(n)
- Opening cost:  $O(n^{1/2})$  via pre-processing
- Verifier cost:  $O(k \cdot n^{1/k})$

The verifier function for KZH= degree 2 scalar multiplications + degree 1 pairing check  $\stackrel{\text{Protostar compiler}}{\Longrightarrow}$ 

- Accumulator size.  $O(\ell^{\frac{1}{2}})$
- Decider complexity.  $O(\ell^{\frac{1}{2}})$
- Prover complexity.  $O(\ell)$
- Verifier complexity. 3 4  $\mathbb{G}_1$  scalar multiplications +  $\mathit{O}(1)$   $\mathbb{F}$

KZH-k fold:

- $O(k \cdot n^{1/k})$  decider and accumulator size
- k + 1 scalar multiplication in recursive circuit.

| Scheme     | <b>Recursive Overhead</b> | Decider                                | —acc—                        |
|------------|---------------------------|----------------------------------------|------------------------------|
| Nova       | 2 group ops               | MSM(n)                                 | O(n)                         |
| KZH2-fold  | 3 group ops               | <i>n</i> <sup>1</sup> / <sub>2</sub> P | $O(n^{\frac{1}{2}})$         |
| KZH-k fold | k+1 group ops             | $k \cdot n^{\frac{1}{k}} P$            | $O(k \cdot n^{\frac{1}{k}})$ |
| Halo       | $O(\log n)$ group ops     | MSM(n)                                 | $O(\log n)$                  |

# IVC/PCD for R1CS From PCS Accumulation



### $\mathsf{NP} \stackrel{\mathsf{PIOP}}{\Longrightarrow} \mathsf{Polynomial\ checks} \stackrel{\mathsf{PCS\ Acc}}{\Longrightarrow} \mathsf{Accumulate\ polynomial\ checks}$

R1CS  $\stackrel{\text{Spartan}}{\Longrightarrow}$  Polynomial checks  $\stackrel{\text{PCS Acc}}{\Longrightarrow}$  Accumulate polynomial checks

## R1CS $\stackrel{\text{Spartan}}{\Longrightarrow}$ witness polynomial $w(\cdot)$ + matrices A, B, C evaluations

- $w(\cdot) \implies$  interpolate  $w(\cdot)$  through a PCS and accumulate.
- Matrices A, B, C can be evaluated as KZH, i.e. KZH works for sparse matrices too.

Better way  $\implies$  accumulate following relation directly:

$$\mathcal{R}_{\tilde{A}} = \{ (r_x \in \mathbb{F}^{\mu_n}, r_y \in \mathbb{F}^{\mu_m}, z \in \mathbb{F}) : \tilde{A}(r_x, r_y) = z \}$$

- Prover cost: log n evaluation of  $\tilde{A}$  (out of circuit)
- Verifier cost (circuit size):  $O(\log n)\mathbb{F}$
- Proof size:  $O(\log n)\mathbb{F}$

- R1CS  $\stackrel{\text{Spartan}}{\Longrightarrow}$  witness polynomial  $w(\cdot)$  + matrices A, B, C evaluations
  - w(·) ⇒ interpolate w(·) as PCS (KZH) and accumulate with PCS accumulator (KZH-fold).
  - Accumulate matrix evaluation of A, B, C directly.

#### IVC from PCS accumulation



Figure: Augmented circuit initiated with KZH-fold

æ

イロト イヨト イヨト ・

# Non-Uniform PCD from PCS Accumulation



| Scheme     | Prover Time                                           | Verifier Time                                                   | Witness Size                   |
|------------|-------------------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| SuperNova  | $O(\sum  F_i )\mathbb{G}$                             | $O(\sum  F_i )\mathbb{G}$                                       | $O(\sum_i  F_i )$              |
| Protostar  | $O(\sum  F_i )$ G                                     | $O(\sum  F_i )\mathbb{G}$                                       | $O(\sum_i  F_i )$              |
| KiloNova   | $O(\sum  F_i )\mathbb{G}$                             | $O(\sum  F_i )\mathbb{G}$                                       | $O(\sum_i  F_i )$              |
| Spartan+PA | $\mathcal{P}_{acc}(\max_i  F_i ) + \sum_i \log  F_i $ | $\mathcal{D}_{acc}(max_i   F_i  ) + O(\sum_i  F_i ) \mathbb{F}$ | $O( acc  + \sum \log_i  F_i )$ |

#### PA=KZH-Fold:

- Prover time:  $O(\max_i |F_i|) + \sum_i \log |F_i|$
- Verifier time:  $O(\sqrt{\max_i |F_i|}) + O(\sum_i |F_i|)\mathbb{F}$
- Witness size:  $\sqrt{\max_i |F_i|} + \sum \log_i |F_i|$

#### High-level idea:

- PCS accumulation  $\implies$  more flexible than circuit accumulation
- Polynomials of different degrees can be accumulated.

Comparison to Supernova:

 $\bullet$  directly accumulates circuit  $\implies$  one running accumulator for each instruction.

### $F_i \stackrel{\text{Spartan}}{\Longrightarrow} \omega_i(\cdot)$ and matrix evaluation of $A_i$ , $B_i$ and $C_i$ .

- $\omega_i(\cdot) \implies$ 
  - **(**) Consider a running polynomial of degree  $deg(\omega_i) < D$ .
  - 2 Accumulate  $\omega_i(\cdot)$  with this running PCS accumulator.
- matrix evaluations of  $A_i$ ,  $B_i$  and  $C_i$ 
  - Similar strategy to SuperNova

Key to efficiency: Matrix evaluations scale logarithmically with the size of the original circuit.

## **THNAKS!**

æ

イロト イヨト イヨト イヨト