-Fold: Sublinear accumulation

George Kadianakis - Aranxta Zapico - Hossein Hafezi - Benedikt Biinz

ethereum

V foundation

-Fold: Sublinear accumulation 1/54

Table of Contents

© Background

© Motivation

© KZH and lts Accumulation Scheme: KZH-Fold
@ \VC for R1CS from PCS accumulation

© Non-Uniform PCD for R1CS from PCS Accumulation

-Fold: Sublinear accumulation 2/54

Background

ZH-Fold: Sublinear accumulation

What is Incremental Verifiable Computation (IVC)? [ValO8]

e IVC:

wo wq Wn—1

° HHZI;} 77777777 4’ o

@ PCD: Generalizes IVC to DAGs

-Fold: Sublinear accumulation 4/54

Non-Uniform IVC/PCD?

Step function F can be one of multiple predefined instructions F, ..., Fx
@ Motivation: Verifiable CPU

wo w1 Wp—-1
20 —> F, —> 21— F; G — — F; —> Zn

-Fold: Sublinear accumulation 5/54

Traditional IVC construction? [BCC+13]

IVC = Augmented circuit:
© Subcircuit F
@ SNARK verifier subcircuit (recursive overhead)

4’ T I

[5| SNARKVerifier |——» —_— T [5| SNARKVerfier | ——» 1,

4’ "
My ——>| SNARKVerfier | 1>

20

-Fold: Sublinear accumulation 6 /54

IVC Construction from Accumulation Schemes [Halo]

X SNARK verifier in circuit is expensive!

Observation. Defer checking all proof = accumulation schemes

-Fold: Sublinear accumulation

Accumulation Scheme

ZH-Fold: Sublinear accumulation

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

o Let £, and L, be two NP languages.

@ An accumulation:
accumulate

acC € Loce, TE Ly = acc’ € Lee

satisfies completeness and knowledge soundness.

-Fold: Sublinear accumulation 9/54

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

o Let £ and L, be two NP languages.

@ An accumulation:

accumulate

acc € Laee, ™€ Ly acc’ € Lace

Completeness: acc and 7 are satisfied <= acc’ is satisfied.

@ Decider = Satisfiability function of £,

-Fold: Sublinear accumulation

Accumulation Scheme [BCMS21;KST21;KP22; BC23]

o Let £, and L, be two NP languages.

@ An accumulation:

accumulate

acc € Loce, T E Ly acc’ € Laec

Knowledge soundness: witness for acc’ = witness for acc and 7.

-Fold: Sublinear accumulation 11/54

Sublinear Accumulation

Sublinearity:
@ acc € Ly, m € Ly = |acc| € o(|n|)

@ Decider time < Verification of w

/ \
/ \ B
[\ / Accumulate \
| Statement 7 | | Acc | | Acc' |
\ / y, y
\ /
. 4
// \\\\ // \\‘ P / N \
/ \ \
/ \ \ Accumulate
| Statementw | [Acc | ‘ Acc
\ / N\ / \ /
\ VZ N J/ . /

Figure: Sublinear vs Linear-Sized Accumulation Scheme

-Fold: Sublinear accumulation 12 /54

Build IVC from Accumulation
Scheme

ZH-Fold: Sublinear accumulation

How to Use Accumulation to Build IVC?

20

accy

1, T2, .

>
Acc Verifier
>

.., T™n = Accumulate them into

—> 21

> ™

——> accy

Acc Verifier

vy

-Fold: Sublinear accumulation

>
Acc Verifier
—

acc, and check acc,,.

Zn

—> acc,

14 /54

BCLMS Compiler: Accumulation for NARK = IVC

BCLMS Compiler: NARK 4+ NARK Verifier Accumulation = IVC
e |VC proof = |acc]
@ IVC verifier = Decideracc

e |VC prover = Proveryark (for augmented circuit) + Proveraec

Sublinear accumulator = IVC/PCD with sublinear proofs/decider

-Fold: Sublinear accumulation 15 /54

Example of Nova

ZH-Fold: Sublinear accumulation

Trivial Nark

| can check pair
(x, w) myself

A\ 4

Prover(x, w) Verifier(x)

-Fold: Sublinear accumulation 17 /54

Nova (Accumulation for Trivial R1CS NARK)

Nova accumulator for (relaxed) R1CS: (n =instance+witness size of R1CS)

@ Accumulator size: O(n)
@ Accumulator prover time: O(n)
@ Accumulator decider time: O(n)

@ Verifier circuit: O(1), 2 or 3 scalar multiplications

-Fold: Sublinear accumulation 18 /54

Nova (Accumulation for Trivial R1CS NARK)

Nova accumulator for (relaxed) R1CS: (n =instance+witness size of R1CS)

@ Accumulator size: O(n)
@ Accumulator prover time: O(n)
@ Accumulator decider time: O(n)

@ Verifier circuit: O(1), 2 or 3 scalar multiplications

Nova IVC via BCLMS compiler:
e IVC proof size: O(n)
e IVC prover time: O(n)
@ |VC decider time: O(n)

-Fold: Sublinear accumulation 19 /54

Nova Compression Phase

Consider a function (circuit) F to be 1M constraints —
@ accumulator size: 80MB
@ decider time: 4s

— Impractical distributed proving.

-Fold: Sublinear accumulation 20 /54

Nova Compression Phase

Consider a function (circuit) F to be 1M constraints —
@ accumulator size: 80MB
@ decider time: 4s

= Impractical distributed proving.

MicroNova/Nova solution: Run a zkSNARK at the last step of IVC —-
reduces proof size (=~ 1KB)

X 24x prover overhead

X No longer incremental.

-Fold: Sublinear accumulation 21 /54

Motivations of Paper

ZH-Fold: Sublinear accumulation

Motivation: Distributed Proving

First Prover

Run decider on
acc, the other guy
might be cheating!

Second prover

23 /54

-Fold: Sublinear accumulation

Motivation: Distributed Proving of zkVM with SuperNova

O
O
o
accCi,...,aCCqq
—._)

First Prover Second prover

@ N-IVC/N-PCD with SuperNova = One accumulator per instruction

-Fold: Sublinear accumulation 24 /54

Motivation For Sublinear Decider

Run decider

Step 1 Step 2 Step n

Figure: IVC when proof of the last step is needed.

-Fold: Sublinear accumulation 25 /54

Motivation: IVC When All Steps Matter!

Run decider Run decider Run decider

Figure: IVC when proof of all steps are needed.

Applications:
o Light clients
@ Verifiable key directory

@ Succinct blockchain

-Fold: Sublinear accumulation 26 /54

Motivation: Distributed signature aggregation (1)

@ Ethereum finality time: 15min = dominated by signature
aggregation computation

Aggregators Aggregators Aggregators Aggregators

If-1 I ——— 11 11

Kvalidators 4 +++- K validators Kvalidators { ~ ++ - K validators

-Fold: Sublinear accumulation 27 /54

Motivation: Distributed signature aggregation (2)

Observations:
@ Computation of aggregators:

e BLS aggregation
e Union of bit vectors(mini PIOP)
o Recomputing aggregate public key

@ Signature aggregation is a layered tree = model as PCD

@ Communication is P2P = we require low communication

-Fold: Sublinear accumulation 28 /54

Motivation: Distributed signature aggregation (3)

Signature Aggregation Based on PCD with sublinear:
@ Improve verifier time and communication by 5x

@ 5x improvement in finality time

-Fold: Sublinear accumulation 29 /54

Contribution

ZH-Fold: Sublinear accumulation

Contributions

e KZH, PCS with Sublinear Opening
@ Sublinear Accumulator Based on KZH

o IVC/PCD with sublinear proof and verifier.
e Signature aggregation for Ethereum via PCD.

e New Approach to N-IVC / N-PCD, First efficient N-PCD
scheme based on any polynomial accumulation

-Fold: Sublinear accumulation 31/54

See numbers for KZH-fold

Scheme Prover | Verifier | |Acc| # Constraints
Spartan+KZH-fold | 16.5s | 135 ms | 37 KB 22T ~ 2097k
Nova 48s 56 s | 80.8 MB 1185k

Table: Spartan+KZH-Fold vs Nova for Circuit With 2000 Poseidon Hashes

-Fold: Sublinear accumulation 32/54

Starting Point

ZH-Fold: Sublinear accumulation

@ IVC with sublinear proof/decider <= Sublinear accumulation.
@ PCS with sublinear predicate = Sublinear accumulation.

Goal: PCS with following properties:
@ Homomorphic
Constant size commitment
Sublinear opening size
Algebraic and low degree verifier checks

No degree 2 pairing

Z e(Pi,gi) = Z e(Pl,g) = g, gl are fixed.

! J

-Fold: Sublinear accumulation 34 /54

KZH and Its Accumulation
Scheme: KZH-Fold

ZH-Fold: Sublinear accumulation

Starting point: Hyrax

Hyrax:
+ PCS with square root opening size = square root accumulator size
X Commitment = O(4/n) group elements = High recursive overhead

-Fold: Sublinear accumulation 36 /54

Starting point: Hyrax

Given a Pedersen setup (g1, g2, - -.,8m), commit to rows of the coefficient
matrix:

tin tiz - tm| = a

1 t - bm| = @

k1 tkoe 0 tkm| T Ck

Commitment size is k = O(y/n) = homomorphism /acc verifier is O(y/n)

-Fold: Sublinear accumulation 37/54

KZH: Commitment Phase

To commit to the matrix of evaluation points via KZH:
@ C: commit to the whole matrix in 1G element, using a universal-SRS.

@ {D;}: Commit to each row using g1, ..., 8m-

ti1 ti2 - tim| = Di

1 tn -+ tm| = Do

tk1 tke o0 tkm| == Dk
c

Prove via pairing that C and {D;} correspond to the same matrix. Uses
SRS.

-Fold: Sublinear accumulation 38 /54

KZH: Opening and Verification

e To open, send {D;} + Hyrax opening
@ To verify an opening with respect to C and the opening:

@ Prove that C and {D;} correspond to the same set of evaluation points.
@ Run hyrax verification.

-Fold: Sublinear accumulation 39/54

KZH properties

—

For a multilinear polynomial 7(X) with on boolean hypercube of size ¢:
e commitment time = O({) group operations.
@ Proof size = VI Gy + VI TF
e Opening time = ¢/ F !
o Verifier time = /¥ pairing + MSM(2\/E) + VI .

'Dominated by polynomial evaluation.

-Fold: Sublinear accumulation

KZH-k

We extend KZH matrix construction to tensors of higher degree —
Lower verifier cost at the cost of higher opening.

e Commitment cost: O(n)
@ Opening cost: O(n'/?) via pre-processing
o Verifier cost: O(k - n'/k)

-Fold: Sublinear accumulation 41 /54

KZH-fold

The verifier function for KZH= degree 2 scalar multiplications + degree 1
Protostar compiler

pairing check

. 1
@ Accumulator size. O(/2

)

@ Decider complexity. O(/

)

e Prover complexity. O(¢)
o Verifier complexity. 3 — 4 Gy scalar multiplications + O(1) F

KZH-k fold:
o O(k - n'/¥) decider and accumulator size

@ k 4+ 1 scalar multiplication in recursive circuit.

-Fold: Sublinear accumulation 42 /54

Compariosn of kzh-fold and other schemes

Scheme | Recursive Overhead | Decider | —acc—
Nova 2 group ops MSM(n) O(n)
KZH2-fold 3 group ops nz P O(n%)

KZH-k fold | k-+1groupops | k-nk P | O(k- n¥)

Halo O(log n) group ops | MSM(n) | O(log n)

-Fold: Sublinear accumulation 43 /54

IVC/PCD for R1CS From
PCS Accumulation

Accumulation for NP from PCS Accumulation

PIOP . PCS A .
NP = Polynomial checks == Accumulate polynomial checks

Spart : PCS A :
R1CS T2 Polynomial checks === Accumulate polynomial checks

-Fold: Sublinear accumulation 45 /54

Accumulation for R1CS from PCS Accumulation

S
R1CS 25" witness polynomial w(-) 4+ matrices A, B, C evaluations

e w(-) = interpolate w(-) through a PCS and accumulate.

@ Matrices A, B, C can be evaluated as KZH, i.e. KZH works for sparse
matrices too.

Better way = accumulate following relation directly:

Ri={(rx €F* r, € F¥m 7z €F) : A(re,r,) = 2}

-Fold: Sublinear accumulation 46 /54

Accumulate A, B, C matrix evaluations

o Prover cost: log n evaluation of A (out of circuit)
o Verifier cost (circuit size): O(log n)F
@ Proof size: O(log n)F

-Fold: Sublinear accumulation 47 /54

Accumulation for R1CS

Spart
R1CS "22" witness polynomial w(-) + matrices A, B, C evaluations

e w(-) = interpolate w(-) as PCS (KZH) and accumulate with PCS
accumulator (KZH-fold).

@ Accumulate matrix evaluation of A, B, C directly.

-Fold: Sublinear accumulation 48 /54

IVC from PCS accumulation

i1 accgf_le) accgi?c)
witness matrix
evaluation evaluations
F VikzH-fold Vasc
Vspartan
T
[[\
Zi acchZH) Spartan Proof acchBC)

Figure: Augmented circuit initiated with KZH-fold

-Fold: Sublinear accumulation 49 /54

Non-Uniform PCD from PCS
Accumulation

Comparison of Approaches to N-PCD

Scheme Prover Time Verifier Time Witness Size
SuperNova OX|Fi))G O IFNG O(%;1Fil)
Protostar O IFNG O IFG O IFil)
KiloNova O |Fi))G O _IFi))G O IFil)
Spartan+PA Pacc(maxi |F,|) + Z,‘ |0g ‘,:l‘ Dacc(maxi |FI|) + O(Z, |FI‘)]F O(|acc| + Z IOgi ‘F'D

PA=KZH-Fold:

@ Prover time: O(max;|Fi|) + >, log |Fi|

o Verifier time: O(y/max; |Fi|) + O(X; |Fil)F
o Witness size: y/max; |F;| + > log; | Fj

-Fold: Sublinear accumulation 51 /54

Non-Uniform PCD from PCS Accumulation

High-level idea:
@ PCS accumulation == more flexible than circuit accumulation

@ Polynomials of different degrees can be accumulated.

Comparison to Supernova:

o directly accumulates circuit == one running accumulator for each
instruction.

-Fold: Sublinear accumulation

Non-Uniform IVC from PCS Accumulation (1)

Spart . .
F; =" wi(+) and matrix evaluation of A;, B; and C;.
) w,-(-) —

@ Consider a running polynomial of degree deg(w;) < D.
@ Accumulate w;(+) with this running PCS accumulator.

@ matrix evaluations of A;, B; and C;
e Similar strategy to SuperNova

Key to efficiency: Matrix evaluations scale logarithmically with the size of
the original circuit.

-Fold: Sublinear accumulation 53 /54

THNAKS!

Fold: Sublinear accumulation

	Background
	Motivation
	KZH and Its Accumulation Scheme: KZH-Fold
	IVC for R1CS from PCS accumulation
	Non-Uniform PCD for R1CS from PCS Accumulation

