
Hossein Hafezi Alireza Shirzad Benedikt Bünz Joseph Bonneau

Secure public keys exchange in secure messaging

John Snow

Request public key of

Secure public keys exchange in secure messaging

John Snow

Request public key of

Secure public keys exchange in secure messaging

John Snow

Request public key of

Public key of

Goal of transparency
• Same view of the server state for all.

• Server replies back consistently with its state.

• Responses are consistent for everyone.

Checks her pk is correct

Gets the same checked pk

Transparency model

Server Clients

Public Bulletin Board

Auditors

General model of transparent dictionaries

• Dynamic dictionary mapping labels to values.

• Dictionary has different states in different epochs.

• Generic concept ==> Different application

Different applications of TD

+(98)9123730591 pk_1

+(98)9153004764 pk_2

+(98)9333805288 pk_3

Slack 1.1 SHA256(slack.exe)

Telegram 5.2 SHA256(telegram.exe)

Signal SHA256(signal.exe)

public key directory software distribution

Important application: public key directory

• Public Key Directories

• As large as 2 billion ==> WhatsApp users’ size in 2020

• Requires throughput of 200 updates/s

• Requirement of privacy (not important for software distribution)

How to Make Transparent Dictionary?

• Server publishes commitment to each state on a bulletin board

• Server proves some invariant between consecutive epochs holds

Proof

Commitment 0 Commitment 1 Commitment n

…
Proof

…

Expected Functionalities from TD

ServerJohn Snow

(I) what is Ygritte’s latest public key?

(II) Prove my pk hasn’t changed since last year?

Lookup operation

Proof of consistency

Why John Snow wants to know his public key hasn’t changed from epoch i to j?

Assume John snow is beyond the wall with no internet from state i+1 to state j-1

State i State i+1 State j

…

Naive Value Consistency

State i State i+1 State j

…

…

Lookup public key in all
states and check equality

Naive Value Consistency

State i State i+1 State j

…

…

Lookup public key in all
states and check equalityToo many proofs bro!

Version Invariant
• Server sets a version for each value in the dictionary

• Initially the version for each value is zero.

• Each time the value is updated, the version increments.

• The server promises to increment versions the values changes.

Version Invariant

state i

state j

check versions

being equal

value + version at epoch i

value + version at epoch j

i

j

time

Version Invariant

state i

state j

check versions

being equal

value + version at epoch i

value + version at epoch j

i

j

time

How to make sure server is
not an oathbreaker?

Illustration of Invariance Proof

Invariance proof, e.g. versions are

incremented for changed values

Proof
(i, pkwilding)

(j, pkbastard)

(k, pkking)

(i + 1, pkfree folk)

(j, pkbastard)

(k, pkking)

Server Clients

Public Bulletin Board

Auditors

Who’s the auditor here?

Who are the auditors?

• People who audit theinvariance proofs!

• If invariance proof is COSTLY ==> auditors are servers.
• If invariance proof is cheap ==> auditors can be everyone.

Who are the auditors?

• People who audit the proof invariance!

• If invariance proof is COSTLY ==> auditors are servers.
• If invariance proof is cheap ==> auditors can be everyone.

The real question: How expensive are invariance proofs to verify?

Audit proofs in Merkle trees

• Proofs are linear in the number of updates ==>

• 200MB for WhatsApp every 5min

• Such proofs are expensive to get succinct with SNARKs

• Hekaton ==> distributed SNARK on a cluster of 4000 machines

• Throughput of ~10 updates/s ==> SHA is expensive in the circuit

Audit proofs in Merkle trees

• Proofs are linear in the number of updates ==>

• 200MB for WhatsApp every 5min for a throughput of 200/s

• Such proofs are expensive to get succinct with SNARKs

• Hekaton ==> distributed SNARK on a cluster of 4000 machines

• Throughput of ~10 updates/s ==> SHA is expensive in the circuit

Can we make auditing cheap enough for everyday users?

Merkle Trees Don’t Give Perfect Privacy

• Privacy in crucial in TP e.g. when used in secure messaging apps:

• Pattern of changing keys

• Tree construction do not have perfect privacy ==> leak function

• SEEMLESS ==> each lookup reveal the last time a key was updated

Our Goal

Our Contributions

• Generic construction of TD based a polynomial commitment scheme

• Perfect privacy ==> first scheme ever!

• Efficient support of fast-forwarding ==> 1000x better than VeRSA!

• Highly efficient: For a dictionary of size 2 billion

• Self-auditing ==> proof of size ~10KB and verified under 125ms

• Efficient lookup and proof of consistency both for the server and client

• Supporting more than 1000 updates/s

• Low memory/computation overhead for the server

Preliminary

• Multilinear polynomial:

• multivariate polynomial where the degree of each variable is at most 1.

• e.g.

• Evaluations of the boolean hypercube give us the polynomial e.g.

f(x1, x2, x3) = x1x2 + 4x2x3 + 5x3 + x1x2x3

f(0,0,0) = y0,0,0 , f(0,0,1) = y0,0,1, …, f(1,1,1) = y1,1,1

Preliminary

• Polynomial commitment scheme (PCS):

• Backbone of SNARKs ==> so much research on it!

• PCS allows someone to commit to a polynomial f(x) and later prove its
evaluation at point x_0, without revealing the whole polynomial.

• Succinctness: commitment is small.

• Efficient: verifier time is sublinear in the polynomial size.

• Binding: the prover cannot change the polynomial later.

Model Dictionary With Polynomials

• Consider a very specific type of dictionary:

• We can model it with a multilinear polynomial:

Dict = [(ℓi, vi)]i∈[n] : {ℓi ∈ {0,1}log2 N

vi ∈ 𝔽∖{0}

p(X) = {
vi : X = ℓi

0 : X ∈ {0,1}log2 N∖{ℓi}i∈[m]

Modelling General Dictionaries

• Dictionaries we are interested in:

Dict = [(ℓi, vi)]i∈[n] : {ℓi ∈ {0,1}*
vi ∈ {0,1}*

One to One Map from String to Field

• Given hash function collision-resistant and oneway H ==>

• One-to-one mapping from to arbitrarily strings

H : {0,1}* → 𝔽∖{0} : 2128 ≤ |𝔽 |

𝔽∖{0}

Dict : {0,1}log2 N → 𝔽∖{0} ≡ Dict : {0,1}log2 N → {0,1}*

Same Strategy Doesn’t Work Again!

• We can define a similar hash function H, but this time it’s not bijective!!!!

H : {0,1}* → {0,1}log2 N

Our Strategy: Keep Two Polynomials

• Keep two different dictionaries:

{Index : {0,1}* → {0,1}log2 N

Value : {0,1}log2 N → {0,1}*
: Dict : {0,1}* → {0,1}* ≡ (Index, Value)

High Level Description of The Model

Index Dictionary

Value Dictionary

Given label ℓ returns its index y ∈ {0,1}log2 N

Opens the value polynomial at y ∈ {0,1}log2 N

What We Want From These Dictionaries

• Index Dictionary: Maps label to an assigned index

• Append only

• Value Dictionary: Maps indexes to values

• When values changes, this dictionary changes

Index Dictionary: How to assign indexes

• We cannot assign indexes with one hash evaluation ==> open addressing

• Use a hash function repeatedly until we find a vacant spot.

Open addressing

• Assume be a hash function from arbitrary strings to the boolean
hypercube.

y0 := ℋ(0,ℓ)

ℋ

y1 := ℋ(1,ℓ)

y2 := ℋ(2,ℓ)

y3 := ℋ(3,ℓ)

Ĩndex(y0) ≠ 0

Ĩndex(y1) ≠ 0

Ĩndex(y2) ≠ 0

Ĩndex(y3) = 0 ⟹ set Ĩndex(y3) = H(ℓ)

Open addressing

• We require size over provisioning!

• Given a 4x over provisioning, on average it takes 1.3 point to find an
empty spot!

Value Dictionary

• We hold no constraint on the value dictionary, e.g. the server can update
it as it wishes

How to Check Consistency?

• Observation: if and a ghost key takes place it
means the difference polynomials have cancelled each other.

Δ̃i = Ṽaluei+1 − Ṽaluei ⟹ Ṽaluen = Ṽaluem + ∑
m≤i<n

Δ̃i

Ṽaluen(x) = Ṽaluem(x)

• Use randomness so they cannot cancel out!!!

• r_i are random values, e.g. derived from Fiat-Shamir

R̃andn = Ṽalue0 + ∑
i<n

ri ⋅ Δ̃i ⟹ R̃andn(y) = R̃andm(y)

⟺ overwelming probability Ṽaluen(y) = Ṽaluen−1(y) = … = Ṽaluem(y)

Index Dictionary

Rand Dictionary

Value Dictionary

Maps usernames to points on the boolean hypercube

Maps points on the boolean hypercube to public keys

Maps points on the boolean hypercube

to rand combination of values

Privacy in IronDict

• Server reveals: sumcheck proof, polynomial commitment and opening

• MAKE ALL ZK ==> only reveal what they’re supposed to

Initiating The System With KZH

• KZH has sublinear opening time (FREE opening for Boolean points)

• Supports efficient zk transformation

• KZH has constant commitment size

Implementation (2 Billion users)

zk-IronDict (KZH-4) WhatsApp (SEEMLESS + Parakeet)

Lookup proof / verification 20KB / 135ms 2-4 KB / ~10ms

Lookup time for server 25ms 6ms

Throughput > 1000 ~200

Audit proof / verification 10KB / 125ms 200MB / 2s

Fast-forwarding auditing

• Auditor being offline for 1000 epochs has to check 1000 proofs!!

• IVC ==> 1000x better than VeRSA for the server

• Checkpoints ==> Only check a sublinear number of epochs.

